3.360 \(\int \frac{\cos (c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=157 \[ -\frac{15 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{32 a^2 d}+\frac{15 i \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{32 \sqrt{2} a^{3/2} d}+\frac{5 i \cos (c+d x)}{16 a d \sqrt{a+i a \tan (c+d x)}}+\frac{i \cos (c+d x)}{4 d (a+i a \tan (c+d x))^{3/2}} \]

[Out]

(((15*I)/32)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*a^(3/2)*d) + ((I/4
)*Cos[c + d*x])/(d*(a + I*a*Tan[c + d*x])^(3/2)) + (((5*I)/16)*Cos[c + d*x])/(a*d*Sqrt[a + I*a*Tan[c + d*x]])
- (((15*I)/32)*Cos[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/(a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.192411, antiderivative size = 157, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {3502, 3490, 3489, 206} \[ -\frac{15 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{32 a^2 d}+\frac{15 i \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{32 \sqrt{2} a^{3/2} d}+\frac{5 i \cos (c+d x)}{16 a d \sqrt{a+i a \tan (c+d x)}}+\frac{i \cos (c+d x)}{4 d (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(((15*I)/32)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*a^(3/2)*d) + ((I/4
)*Cos[c + d*x])/(d*(a + I*a*Tan[c + d*x])^(3/2)) + (((5*I)/16)*Cos[c + d*x])/(a*d*Sqrt[a + I*a*Tan[c + d*x]])
- (((15*I)/32)*Cos[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/(a^2*d)

Rule 3502

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(b*f*(m + 2*n)), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rule 3490

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(a*f*m), x] + Dist[a/(2*d^2), Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan
[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && GtQ[n, 0]

Rule 3489

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*a)/(b*f), Subst[
Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^
2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos (c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx &=\frac{i \cos (c+d x)}{4 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 \int \frac{\cos (c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx}{8 a}\\ &=\frac{i \cos (c+d x)}{4 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 i \cos (c+d x)}{16 a d \sqrt{a+i a \tan (c+d x)}}+\frac{15 \int \cos (c+d x) \sqrt{a+i a \tan (c+d x)} \, dx}{32 a^2}\\ &=\frac{i \cos (c+d x)}{4 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 i \cos (c+d x)}{16 a d \sqrt{a+i a \tan (c+d x)}}-\frac{15 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{32 a^2 d}+\frac{15 \int \frac{\sec (c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx}{64 a}\\ &=\frac{i \cos (c+d x)}{4 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 i \cos (c+d x)}{16 a d \sqrt{a+i a \tan (c+d x)}}-\frac{15 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{32 a^2 d}+\frac{(15 i) \operatorname{Subst}\left (\int \frac{1}{2-a x^2} \, dx,x,\frac{\sec (c+d x)}{\sqrt{a+i a \tan (c+d x)}}\right )}{32 a d}\\ &=\frac{15 i \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{32 \sqrt{2} a^{3/2} d}+\frac{i \cos (c+d x)}{4 d (a+i a \tan (c+d x))^{3/2}}+\frac{5 i \cos (c+d x)}{16 a d \sqrt{a+i a \tan (c+d x)}}-\frac{15 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{32 a^2 d}\\ \end{align*}

Mathematica [A]  time = 0.978652, size = 120, normalized size = 0.76 \[ \frac{\sec (c+d x) \left (\frac{30 e^{2 i (c+d x)} \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )}{\sqrt{1+e^{2 i (c+d x)}}}-2 (10 i \sin (2 (c+d x))+6 \cos (2 (c+d x))-9)\right )}{64 a d (\tan (c+d x)-i) \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(Sec[c + d*x]*((30*E^((2*I)*(c + d*x))*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]])/Sqrt[1 + E^((2*I)*(c + d*x))] -
 2*(-9 + 6*Cos[2*(c + d*x)] + (10*I)*Sin[2*(c + d*x)])))/(64*a*d*(-I + Tan[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]
])

________________________________________________________________________________________

Maple [B]  time = 0.246, size = 346, normalized size = 2.2 \begin{align*}{\frac{1}{128\,{a}^{2}d}\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}} \left ( 64\,i \left ( \cos \left ( dx+c \right ) \right ) ^{5}+15\,i\cos \left ( dx+c \right ) \sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{2\,\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) +64\,\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{4}+15\,i\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{2\,\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) +8\,i \left ( \cos \left ( dx+c \right ) \right ) ^{3}+15\,\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ( 1/2\,{\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) \sqrt{2}\sin \left ( dx+c \right ) +40\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) -60\,i\cos \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

1/128/d/a^2*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(64*I*cos(d*x+c)^5+15*I*cos(d*x+c)*2^(1/2)*(-2*cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x
+c)+1))^(1/2))+64*sin(d*x+c)*cos(d*x+c)^4+15*I*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)
*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+8*I*cos(d*x+c)^3+15*(-2*cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+
1))^(1/2))*2^(1/2)*sin(d*x+c)+40*cos(d*x+c)^2*sin(d*x+c)-60*I*cos(d*x+c))

________________________________________________________________________________________

Maxima [B]  time = 2.16221, size = 2457, normalized size = 15.65 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/256*((cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x +
 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(3/4)*((36*I*sqrt(2)*cos(4*d*x + 4*c)
+ 36*sqrt(2)*sin(4*d*x + 4*c))*cos(3/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*a
rctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)) - 36*(sqrt(2)*cos(4*d*x + 4*c) - I*sqrt(2)*sin(4*d*x + 4*c))
*sin(3/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4
*d*x + 4*c))) + 1)))*sqrt(a) + (cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4
*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(1/4)*((-28*I*
sqrt(2)*cos(4*d*x + 4*c) - 28*sqrt(2)*sin(4*d*x + 4*c) - 32*I*sqrt(2))*cos(1/2*arctan2(sin(1/2*arctan2(sin(4*d
*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)) + 4*(7*sqrt(2)*cos(4
*d*x + 4*c) - 7*I*sqrt(2)*sin(4*d*x + 4*c) + 8*sqrt(2))*sin(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(
4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)))*sqrt(a) - (30*sqrt(2)*arctan2((cos
(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 +
 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x +
 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)), (cos(1/2*arctan2(sin(4*
d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(
sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x +
4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)) + 1) - 30*sqrt(2)*arctan2((cos(1/2*arctan2(
sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*ar
ctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*
d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)), (cos(1/2*arctan2(sin(4*d*x + 4*c), c
os(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4
*c), cos(4*d*x + 4*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1
/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)) - 1) - 15*I*sqrt(2)*log(sqrt(cos(1/2*arctan2(sin(4*d*x +
 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4
*d*x + 4*c), cos(4*d*x + 4*c))) + 1)*cos(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos
(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1))^2 + sqrt(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x +
 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4
*d*x + 4*c))) + 1)*sin(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4
*d*x + 4*c), cos(4*d*x + 4*c))) + 1))^2 + 2*(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*
arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(
1/4)*cos(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), c
os(4*d*x + 4*c))) + 1)) + 1) + 15*I*sqrt(2)*log(sqrt(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 +
sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))
) + 1)*cos(1/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c),
 cos(4*d*x + 4*c))) + 1))^2 + sqrt(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(si
n(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)*sin(1/2*arc
tan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))
) + 1))^2 - 2*(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(
4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(1/2*a
rctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)) + 1))*
sqrt(a))/(a^2*d)

________________________________________________________________________________________

Fricas [B]  time = 2.08285, size = 845, normalized size = 5.38 \begin{align*} \frac{{\left (15 i \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{1}{a^{3} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left ({\left (2 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{1}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 15 i \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{1}{a^{3} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-{\left (2 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{1}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (-8 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 11 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 2 i\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{64 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/64*(15*I*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*e^(5*I*d*x + 5*I*c)*log((2*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*e^(I
*d*x + I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x -
 I*c)) - 15*I*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*e^(5*I*d*x + 5*I*c)*log(-(2*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*
e^(I*d*x + I*c) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d
*x - I*c)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-8*I*e^(6*I*d*x + 6*I*c) + I*e^(4*I*d*x + 4*I*c) + 11*
I*e^(2*I*d*x + 2*I*c) + 2*I)*e^(I*d*x + I*c))*e^(-5*I*d*x - 5*I*c)/(a^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos{\left (c + d x \right )}}{\left (a \left (i \tan{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral(cos(c + d*x)/(a*(I*tan(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)/(I*a*tan(d*x + c) + a)^(3/2), x)